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Abstract
Two systems that are not fluids but that have properties normally associated
with fluids will be discussed: nematic elastomers, which are liquid crystalline
rubbers whose shear modulus vanishes because of a spontaneous broken
symmetry, and granular materials under flow. Kinetic–hydrodynamic equations
for the latter materials will be used to discuss flows in Couette cells and down
rough inclined planes.

1. Introduction

Fluids are materials that flow freely and that cannot support a shear stress. True equilibrium
fluids have a number of other properties. In the absence of external potentials such as gravity,
they are isotropic and spatially homogeneous; their density, pressure, and temperature are
spatially uniform. Liquid crystals are materials that lack the rotational isotropy and sometimes
the spatial homogeneity of traditional fluids, yet they cannot support a shear stress in all
directions and under appropriate conditions, they can flow. Thus, liquid crystals might be
termed ‘almost fluids’, as indeed their name, which is almost an oxymoron, indicates. In this
presentation, I will discuss two other materials that are clearly not fluids but that, nonetheless,
have at least some properties normally associated with fluids. The materials are nematic
elastomers, which are basically rubbers that in their ideal form spontaneously develop the
orientational anisotropy of a nematic liquid crystal, and granular materials that are quiescent
unless subjected to external shears, in which case they develop flows that one might hope could
be described by hydrodynamicequations similar to those used to describe flow in normal fluids.

2. Nematic elastomers

Rubbers or elastomers and gels are random polymeric networks that can support a shear
strain. In their usual form, they are macroscopically isotropic and homogeneous, and for small
strains, their elastic energy is identical in form to that of an isotropic solid or a glass, but with
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a shear modulus that is much smaller than their bulk modules. Rubbers are usually formed by
chemically binding, or cross-linking, pairs of polymers in a dense melt of flexible polymers,
whereas gels are usually formed by reactions between multifunctional units in a solutions. Gels
can undergo enormous volume changes in response to changes in solvent or temperature [1].

Rigid units can be attached to polymers, either along the main chain or as pendants, to
produce the same sequence of nematic and smectic liquid crystalline phases that are found in
traditional nonpolymeric thermotropic liquid crystals. These liquid crystal polymers can be
weakly cross-linked [2] to produce an elastomer that can condense into various liquid crystalline
phases upon cooling. The interplay between liquid crystalline order and shear elasticity leads
to unusual properties [3, 4] that may lead to interesting applications, from artificial muscles
to actuators, for these thermotropic elastomers. These materials have enormous thermoelastic
response and can undergo changes in length by as much as 300% in response to changes in
temperature of only a few degrees. Equally striking, as I will discuss in more detail below, is the
soft elastic response [5] in nematic elastomers that form by spontaneous symmetry breaking
from the isotropic elastomer phase: one of the five elastic moduli that normally characterize
a uniaxial solid vanishes and the stress required to create finite strains in certain geometries
vanishes in the ideal case.

Though most liquid crystalline elastomers prepared to date have been thermotropic,
it is also possible [6] to create lyotropic gels by introducing gel-forming agents
(e.g., polyacrylamide) in a dispersion of hard rods such as tobacco mosaic viruses. In the
absence of a gel, such rods undergo a transition to the nematic phase upon compression [7].
Polyacrylamide gels can undergo enormous changes in volume in response to changes in
temperature or solvent [1]. The volume fraction of rods dispersed in a dilute gel can be
increased by compressing the gel and a transition to a nematic gel state can be induced.

To describe the unusual elastic properties of nematic elastomers, it is necessary to review
some notation. An equilibrium unstretched elastic medium occupies a region of a Euclidean
3-space, which we will call the reference space SR . Mass points in this medium are indexed
by their vector positions x = (x1, x2, x3) ≡ (x, y, z) in SR , which are their positions in the
unstretched medium. When the medium is distorted, the point originally at x is mapped to a
new point R(x) = (R1(x), R2(x), R3(x)) in Euclidean space. We will refer to the space of
points defined by R as the target space ST . Since there is no distortion when R(x) = x, it
is useful to introduce the displacement vector u(x) that measures the deviation of R from x:
R(x) = x+u(x). Both SR and ST are Euclidean, with distances determined by the unit metric:
dx2 = dxi dxi , and dR2 = dRi dRi , where the Einstein summation convention on repeated
indices is understood. Distortions that vary slowly on a scale set by microscopic lengths of
the reference material (interparticle separation in a glass, distance between cross-links in an
elastomer, etc) are described by the Cauchy deformation tensor,

�i j = ∂ Ri

∂x j
≡ ∂ j Ri . (1)

Throughout this paper, we will often use matrix notation in which M is the matrix with

components Mi j and MT is the transpose matrix with components M ji .
The energy of the distorted state relative to the undistorted one depends on the familiar

nonlinear Lagrangian strain tensor [8],

ui j = 1
2 (�ki�k j − δi j) = 1

2 (∂i u j + ∂ j ui + ∂i uk ∂ j uk), (2)

which is symmetric by construction. It is invariant (i.e., transforms as a scalar) under arbitrary
rotations of the target space vector R, i.e., if Ri is replaced by R′

i = OT i j R j , where OT i j is an
arbitrary rotation matrix, ui j does not change. On the other hand, ui j transforms like a rank-2
tensor under rotations of the reference space, i.e., if xi → x ′

i = O−1
Ri j x j , then u → O

R
u O−1

R
.
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The elastic energy of an isotropic medium must be invariant under rotations O
R

in the
reference space and rotations O

T
in the target space. Invariance with respect to rotations in the

target space is guaranteed by the use of the Lagrangian strain tensor of equation (2). Invariance
with respect to rotations in the references space are enforced by including in the energy only
combinations of ui j that are rotationally invariant under O

R
, i.e., by including only terms of

the form Tr un . In the spirit of a Landau expansion, we can, therefore, use a model energy of
the form

f (u) = 1
2λ(Tr u)2 + µ Tr u2 − C Tr u3 + D(Tr u2)2 − E Tr u Tr u2, (3)

where λ and µ are the usual Lamé coefficients for an isotropic solid, and C , D, and E are
phenomenological constants. Usually, only the second-order terms are included. We, however,
are interested in situations in which there is a phase transition from the isotropic phase to an
anisotropic phase in which Ri (x) = R0i (x) = �0i j x j and there is a nonvanishing anisotropic
strain tensor,

u
0

= 1
2 (�T

0
�

0
− δ) = 1

2�2
0⊥[(1 − �−2

0⊥)δ + (r − 1)n0n0], (4)

where n0 is the unit vector specifying the direction of stretch. �0i j = �0⊥δi j + (�0|| −
�0⊥)n0i n0 j is the equilibrium deformation tensor. The anisotropy of the nematic state
can be characterized by the anisotropy ratio r = �2

0||/�
2
0⊥. In incompressible systems,

det �
0

= �0||�2
0⊥ = 1, �0⊥ = �

−1/2
0|| , leading to r = �3

0||. As we will see below, many
of the properties of the uniaxial phase depend critically on r .

We wish to explore the elasticity of spontaneously uniaxially ordered nematic elastomers.
Distortions of these equilibrium systems can be described by deviations,

δu = u − u
0

= 1
2 (�T� − �

0
�

0
), (5)

of the strain tensor u from its new equilibrium value u
0
, both measured in the coordinates x

of the original isotropic state, SR . It is, however, more common and convenient to describe
these distortions in terms of displacements R′(x′) ≡ R(x) and strains u′(x′) expressed as

functions of the coordinates x′ ≡ R0(x) of the new equilibrium stretched state S′
R ≡ S0

T :
R′(x′) = x′ + u′(x′) and u′ = 1

2 (�′T �′ − δ), where �′
i j = ∂ R′

i/∂x ′
j . The deviation δu is

directly proportional to u′:

δu = �T
0
u′�

0
. (6)

One would normally expect the elastic free energy for strains u′ about the new uniaxial state
to have the form of a uniaxial solid [8] characterized by five independent elastic constants.
However, the fact that the uniaxial state arose via spontaneous symmetry breaking of an
isotropic state guarantees that the shear modulus, C5, measuring the energy of strains in planes
containing n0 must vanish.

Since the original free energy is invariant under rotations O
R

in SR and the anisotropy
direction n0, which we take to be along the z-axis in ST , is arbitrary, states characterized by
strain O

R
u

0
O−1

R
and u

0
must have the same bulk energy. This means that there is no bulk

energy cost associated with any strain of the form

u′(θ) = (�T
0
)−1(O

R
u0 O−1

R
− u

0
)�−1

0
, (7)

relative to the uniaxial state characterized by u
0
, since it describes a rotation in SR . It can be

shown [4] that this invariance implies that there is no energy cost associated with an infinitesimal
strains u′

xz = u′
zx and u′

yz = u′
zy . Thus, the shear elastic modulus C5 must identically vanish
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Figure 1. Stress σxx versus strain �xx for an ideal soft nematic elastomer stretched along a
direction perpendicular to the direction of initial alignment. The stress is zero up to a critical strain
�xx = √

r . Beyond that it initially grows linearly from zero.

in a spontaneously uniaxial state. Its harmonic elastic energy is, therefore, characterized by
only four elastic constants and is given by

f N
uni = 1

2 C1u′2
zz + C2u′

zz(u
′
xx + u′

yy) + 1
2 C3(u

′
xx + u′

yy)
2 + C4(u

′2
xx + u′2

yy + 2u′2
xy). (8)

Because f N
uni contains only harmonic terms in u′

i j, it is only invariant with respect to infinitesimal
rotations in SR , and terms nonlinear in u′

i j must be incorporated in order to encode the full
OR-invariance [10].

There are striking experimental consequences of the existence of zero-energy strains u′(θ)

given by equation (7) for arbitrary O
R

. If a strain u′
xx is imposed along the x-direction

perpendicular to the anisotropy direction, the anisotropy axis can rotate so as to allow the
stretch to occur without any energy cost. The result is that no stress is required to produce
the strain u′

xx until �′
xx reaches a value of r1/2 at which point the anisotropy axis is aligned

along x , and further stretching requires a stress. The stress–strain relation for this semi-soft
elasticity is shown in figure 1.

Random stresses, inherent in any rubber, produce random orientational fields for the
nematic degrees of freedom and make it difficult, if not impossible, to produce a true
monodomain sample of a nematic elastomer without the imposition of an aligning stress
at the moment of cross-linking. This uniaxial stress breaks the rotational symmetry of the
originally isotropic elastomer and gives rise to an extra term −σzzuzz in equation (3). As a
result, the nematic state will align along the z-axis, and the nematic state will not exhibit true
soft elasticity with the stress–strain curve shown in figure 1(a); rather it will exhibit semi-soft
elasticity [9, 10] with a stress–strain curve such as that shown in figure 1(b).

3. Granular flow

Granular materials [11], such as sand and flour, are composed of small grains or particles
that are nevertheless so large that, unlike atoms in a liquid or colloidal particles dispersed in
a fluid, their centre-of-mass motion due to thermal fluctuations is negligibly small. When
confined to containers under gravity, granular materials are essentially quiescent though
they may undergo slow rearrangement processes in response to gravitational stress. When
subjected to sufficiently large shears, however, they can fluidize and flow. Under flow, granular
particles undergo collisions with their neighbours and develop random velocity fluctuations
like particles in a fluid. It seems reasonable, therefore, that granular materials under flow
might be characterized by a local pressure P and a local granular temperature T , proportional
to fluctuations in the velocity, in addition to an average velocity V and that they should,
therefore, be described by hydrodynamic equations similar to the Navier–Stokes equations for
a fluid even though collisions between particles are inelastic and may have components due to
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solid friction. Indeed, there is a considerable body of literature on hydrodynamic theories of
granular flow [12].

Here I will describe a hydrodynamic theory [13] designed to treat dense as well as dilute
granular materials under flow and use it to describe flow in Couette cells and down a rough
inclined plane [14]. Like previous theories, it is based on the Chapman–Enskog kinetic theory
of fluids, but it includes a more rapid divergence of the shear viscosity as the close-packing
density is approached than would be predicted by that theory. In spite of its limitations, which
will be discussed more fully below, this theory predicts velocity and temperature profiles that
are in remarkable agreement with shear experiments in Couette geometry [13, 15], and it
predicts a purely dynamical jammed-to-flowing transition in chute flow down a plane that also
is in remarkably good agreement with detailed simulations [16].

We take the point of view that a flowing granular material behaves locally like a hard-sphere
fluid with colliding particles that generate a kinetic pressure P proportional to the temperature.
The pressure diverges as the number density n approaches the random-close-packing density
nc, and the free volume available to a given particle vanishes:

P = n[1 − (n/nc)]
−1T . (9)

This equation of state neglects stresses mediated by the enduring contacts between particles that
are responsible for force chains and anisotropies in the pressure. These contacts are certainly
important, especially near the static limit and when the gravitational length is smaller than a
particle diameter. We will, nonetheless, neglect them for the moment.

In the steady state in a uniform gravitational field g, the Navier–Stokes equation for the
momentum becomes the force-balance equation for a fluid of mass density ρ = mn, where m
is the particle mass:

∂ jσi j = −ρgi , (10)

where σi j = −Pδi j + 2ηγ̇i j is the stress tensor with η the shear viscosity and γ̇i j =
(∂i V j + ∂ j Vi)/2 is the shear-rate tensor. For simplicity, we will consider only situations
in which the velocity is along the x-direction, and there is only spatial variation along y. In
this case, the only nonvanishing component of γ̇i j is γ̇ = ∂yVx , and the temperature equation
becomes

∂y[λ(n, T ) ∂y T ] + [σ 2
xy/η(n/nc, T )] − ε(n, T )T = 0, (11)

where λ(n, T ) is the thermal conductivity and ε(n, T ) is the dissipative coefficient describing
irreversible heat loss.

For most applications in normal fluids, the transport coefficients are effectively constants.
This is not the case for granular fluids in which the granular temperature goes to zero as the
shear rate goes to zero; the dependences of transport coefficients on density and temperature
are important. Following earlier work [12], we use the Chapman–Enskog expressions for the
thermal conductivity and heat-loss coefficients:

λ(ρ, T ) = [λ0/(m
1/2d2)][1 − (n/nc)]−1T 1/2;

ε(ρ, T ) = (ε0m1/2nc/d)[1 − (n/nc)]
−1T 1/2,

(12)

which diverge as [1 − (n/nc)]−1 as nc is approached. For η, we deviate from the
standard Chapman–Enskog result and allow for a more rapid divergence with n near nc as
simulations [17] and mode-coupling theories [18] suggest:

η(n/nc, T ) = η0[m1/2/d2]φ(n/nc)T 1/2, (13)



S52 T C Lubensky

where φ(n/nc) is a function that crosses over from the Chapman–Enskog behaviour of
(1 − n/nc)

−1 at intermediate and low densities to a more rapid divergence near nc. For
densities near nc, we take

φ(n/nc) = A(1 − n/nc)
−β, (14)

where A is a constant and β > 1 is an exponent that can be viewed as a phenomenological
parameter to be set by experiments and is in the range 1.5–1.75 [13, 15]. In chute flow down
an inclined plane, the density can in general pass from low to high, and we use the expression
φ(x) = [(1 − x)β−1 + α

β−1
0 /(1 − x)β(1 + α

β−1
0 )], which interpolates smoothly between the

low- and high-density limits.
In Couette experiments, granular material is confined between two concentric cylinders

and the inner cylinder is spun, thereby generating shear flow that decays as the outer cylinder
is approached. If we ignore gravity, then from equation (10), both the pressure P and σxy

are constant, so σxy = η(n/nc, T )γ̇ = constant. The granular density is generally near
the random-close-packing density, and we expect the anomalous form (equation (14)) of the
viscosity to apply. In this case, we obtain a power-law relation γ̇ ∼ T

1
2 (2β−1) between shear

rate and temperature. Thus, the shear rate is proportional to a power of the temperature.
Measurements by Losert et al [13] and by Mueth [15] are consistent with this behaviour and
yield, respectively, exponents of β = 1.75 and 1.5.

In the dense regime, the nonlinear heating term in the temperature equation, equation (11),
scales as σ 2

xy/η(n/nc, T ) ∼ T (2β−1)/2 and approaches zero more rapidly with T than does the
heat-loss term εT ∼ T 1/2. Thus, as shear rate and temperature decrease with distance from the
inner cylinder, the nonlinear heating term eventually becomes small compared to the heat-loss
term, and the former can be neglected relative to the latter for distances greater than a crossover
length yw. Thus, for y > yw, the equation for the temperature takes the simple form

∂2
y T 1/2 − δ−2T 1/2 = 0, (15)

where δ has the dimension of a length and is defined by δ2 = 2λ0/(ε0ρ0 d). In the pure
Chapman–Enskog theory [12], both the nonlinear heating and the heat-loss terms scale as
T 1/2, and both remain equally important throughout the sample.

Equation (15) can easily be solved for T 1/2 with the boundary condition that it reach a
value of T0 at y = yw. The result is

T 1/2(y) = T 1/2
0

cosh[(H − y)/δ]

cosh[(H − yw)/δ]
. (16)

Experimental data [13, 15] are in excellent agreement with this result. Once the temperature has
been found, the velocity v(y) can be obtained by integrating the equation relating γ̇ = ∂yv/2
to T . Again, the result is in good agreement with experiment.

Granular material on a rough inclined plane will flow for a sufficiently high angle θ of
incline relative to the horizontal [19, 20]. Pouliquen [19] recently measured flows down such
a plane and found a remarkable phase diagram in which there is no flow for the thickness H of
the flowing layer less that a critical value Hstop(θ) that depends on the tilt angle. For H greater
than Hstop(θ) but not too much greater, there is a steady uniform flow. For larger values of H
(or equivalently sufficiently large values of θ at fixed H ), flow becomes unsteady and difficult
to measure. Detailed simulations reproduce these results with considerable accuracy [16].

Application of the kinetic hydrodynamical equations discussed above is straightforward.
Unlike the situation in Couette geometry, gravity is responsible for the flow and cannot
be neglected. We introduce dimensionless variables v = Vx/

√
gd, t = T/(ρcgd), σ =

σxy/(ρcgd), p = P/(ρcgd), take the x-axis to be parallel to the plane and the y-axis normal
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to it, and measure distance in units of the particle diameter d . The equations for pressure and
temperature are then

∂

∂y
p = − cos θ

t

p + t
(17)

∂y

((
p + t

t1/2

)
∂yt

)
+ a

σ 2

φ(
p

p+t )t
1/2

− bpt1/2 = 0, (18)

where p/(p + t) = ρ/ρc is the reduced density, a = (ρcd3)2/(λ0η0) and b = ε0ρcd3/λ0

are dimensionless constants, σ is related to p according to σ = tan θp + c, with c an as
yet unspecified constant. The parameters appearing in equation (18) are strongly constrained
by the complementary experiments performed in the Couette cell [13, 15]. In this case, the
velocity and temperature profiles are localized close to the moving boundary over a depth
of a few particle diameters. This behaviour is predicted by the hydrodynamic model with a
characteristic decay length for the RMS velocity given by δ/d = (2/b)1/2 [13]. Experimentally,
δ is of the order of 4–5 particle diameters, yielding b � 0.1 (we shall use in the following
b = 0.111). The exponent β is assumed to have the same value, 1.5–1.75, as in the Couette
experiments. The parameter α0 in φ(x) is chosen such that the crossover to the anomalous
scaling occurs roughly 10% below random close packing. In practice, α0 = 0.05 is adequate.
Eventually, a is expected to be of order unity.

The hydrodynamic equations (17) and (18) have to be supplemented by boundary
conditions for the velocity and temperature fields at the bottom and top surfaces. As described
in [14], we take ∂y T = 0 at both boundaries, v = 0 at y = 0 and σ = 0, implying ∂yv = − at
y = H . Since, as mentioned above, the effective hydrodynamic boundary y = H is located
slightly inside the material, the pressure is not expected to vanish there, and it can be written as
p0 = y0 cos θ (in reduced units) with y0 a molecular distance of the order of the diameter (unity
in reduced units). To ensure full consistency with the stress-free boundary for the velocity, we
thus write σ = tan θ(p − p0) (i.e., fix the constant c = − tan θp0). As emphasized above,
this is a molecular effect that disappears in the large-H limit. Moreover, this choice does not
affect the existence of the jammed-to-flowing transition to be discussed now.

Numerical solutions to the system of equations (17) and (18) yield a transition between
two kinds of behaviour: for a set {H, θ} such that H is below a critical Hstop(θ) curve, only the
T = 0 solution exists. This corresponds to a ‘jammed’ state, which stays at rest. Above this
critical value, nonzero solutions for the temperature which correspond to a flowing regime do
exist. Figure 2(a) shows the boundary between the two regimes, denoted as Hstop(θ) as in [19].
This curve is in qualitative agreement with the experimental results of [19] and simulations
of [16]. Thus the hydrodynamic model is able to generate a finite critical angle below which
no flow occurs. Within the model, the origin of this behaviour is simply the balance between
the ‘viscous heating’, which generates fluctuations, and dissipation, which tends to inhibit the
flow. The transition is thus purely dynamical: a jammed state occurs for low angles/thicknesses
because fluctuations are insufficient to allow flow.

Above Hstop(θ), more than one solution can be found for some sets of parameters {H, θ}.
However, a linear stability analysis of the hydrodynamic equation for the temperature shows
that only the nonzero solution with the largest value of T (H ) is dynamically stable. On the
other hand, the T = 0 solution is always linearly stable, but becomes unstable against larger
‘kicks’ in the temperature. It is important to note that there is a solution to the hydrodynamic
equations for any set of H and θ above the boundary Hstop(θ), as is found experimentally.
This is in contrast to other approaches where for a given θ a single flowing thickness H is
selected [21]. In the flowing regime, we obtain temperature and density profiles; those for
H = 40 are plotted in figure 2(b).
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Figure 2. (a) The phase diagram for the jammed-to-flowing transition in a gravity-driven granular
material as obtained from the resolution of the hydrodynamic equations (17) and (18). (b) Top:
normalized temperature profiles for H = 40, θ = 20.55◦ , 20.90◦ , 21.50◦, 22.50◦. Bottom:
normalized density profiles for H = 40, θ = 20.55◦ , 20.90◦ , 22.50◦ , 24.50◦, 26.50◦ from top to
bottom. The parameters used are a = 1.3, b = 0.111, α0 = 0.05, y0 = 0.5.

The results for both the density and temperature are in qualitative agreement with the
simulations of [16]. In particular, the density profile is almost constant in the middle of the
sample, with a large drop at the top surface, as found numerically. In the simulations, however,
the plateau in the density is flatter than ours. Since ρ(z)/ρc is always considerably less than 1,
the thermal pressure of our model has no trouble supporting the weight of grains. Pressure
from enduring contracts does, however, appear to be important in simulations [16, 22] and
experiments.

As already mentioned, the kinetic–hydrodynamic theory presented here does not explicitly
include nonthermal stresses due to enduring contacts between particles. These contacts are
induced by gravitational or other forces tending to compress the material. Indeed, in typical
granular experiments, the thermal gravitational length λg = T/mg is much less than the
diameter of a particle. In the experiments of [13], λg/d < 10−3, implying that the density
must be tuned to within less than 10−3 of nc in order for thermal pressure alone to support
the weight of even one layer of particles1. This is clearly not the case, and the hard-sphere
thermal equation of state cannot be used to describe the entire Couette column. Why then
do the equations here do such a good job of describing the experiments in [13] and [15]? A
possible explanation is that these experiments only measure properties of either the topmost or
bottom-most layer of particles and that our equations correctly capture the dynamics of these
layers. Indeed data from experiments on 2D layers agree well with our theory [23]. It seems
likely that the anomalous divergence of the viscosity is associated with dynamic force chains,
which are present in both 2D and 3D systems. Gravity plays a similarly important role in
experiments and simulations on flow down inclined planes. Out theory, however, produces an
Hstop(θ) curve in good agreement with both in a regime in which ρ/ρc (see figure 2) is not
abnormally close to one and thermal pressure is clearly able to support the material weight.

These considerations raise a number of interesting questions that deserve further study.
Would Couette experiments on granular materials in a microgravity environment yield results
similar to those obtained on Earth? Would their detailed behaviour be well described by our
kinetic–hydrodynamic theory, which is best suited for λg/d large? How do the properties of
granular flow down an inclined plane change as λd is increased? How should a hard-sphere
gas be described when λg/d becomes of order one or less? Is it even well defined? There is
clearly much more to be learned about the flow of granular materials.

1 The author is grateful to Greg Voth for bringing this fact to his attention.
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